Effect of Adding Different Active Substances on Inhibition Zone Diameter and Microstructural Properties of Composite Bioplastics
DOI:
https://doi.org/10.21776/ub.jpa.2025.013.01.2Keywords:
Composite bioplastics, Inhibition diameter zone, Microstructure, Phytochemical, Syzygium myrtifolium ExtractAbstract
This study identifies the phytochemical compounds in ethanolic extracts of Syzygium myrtifolium leaves, applies it to developing composite bioplastics as a natural antibacterial agent, and compares it with composite bioplastics prepared with sodium benzoate, particularly regarding inhibition zone diameter and microstructure. The results showed that the phytochemicals were identified in the ethanolic extract of Syzygium myrtifolium leaves, like flavonoids, alkaloids, tannins, phenolics, terpenoids, and saponins. LC-MS confirming bioactive in it as auraptenol, calopiptin, quercetin-3-O-β-D-glucuronide, and quercetin-3-O-L-arabinopyranoside. Moreover, in vitro tests showed that composite bioplastics with the ethanolic extracts of Syzygium myrtifolium had inhibition zone diameter against E. coli, similar to those with sodium benzoate added. Additionally, the microstructure of the composite bioplastics with the ethanolic extracts of Syzygium myrtifolium was rougher, irregular, and more porous than those of another. It indicated that the ethanolic extract of Syzygium myrtifolium leaf could be used as a natural antibacterial agent to replace the chemical agent.
References
Ahmad, M. A., Lim, Y. H., Chan, Y. S., Hsu, C. Y., Wu, T. Y., & Sit, N. W. (2022). Chemical composition, antioxidant, antimicrobial and antiviral activities of the leaf extracts of Syzygium myrtifolium. Acta Pharm, 72, 1–12.
Artha, R. P., Anindita, S. F., & Iskandar, M. I. (2023). Tren Produksi Dan Konsumsi Plastik Di Indonesia.
Attallah, O. A., Mojicevic, M., Garcia, E. L., Azeem, M., Chen, Y., Asmawi, S., & Fournet, M. B. (2021). Macro and Micro Routes to High Performance Bioplastics : Properties. Polymers, 13, 2155. https://doi.org/10.3390/polym13132155
Avitabile, M., Mirpoor, S. F., Esposito, S., Merola, G., Mariniello, L., Patanè, G. T., Barreca, D., & Giosafatto, C. V. L. (2024). Manufacture of Bioplastics Prepared from Chitosan Functionalized with Callistemon citrinus Extract. Polymers, 16, 2693. https://doi.org/10.3390/polym16192693
Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67(4), 833–848. https://doi.org/10.1201/9781315373713
Chen, H., & Zhong, Q. (2018). Antibacterial activity of acidified sodium benzoate against Escherichia coli O157: H7, Salmonella enterica, and Listeria monocytogenes in tryptic soy broth and on cherry tomatoes. International Journal of Food Microbiology, 274, 38–44.
Chen, X., Wong, C. H., & Ma, C. (2019). Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective. ACS Infectious Diseases, 5(9), 1493–1504. https://doi.org/10.1021/acsinfecdis.9b00118
Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51(2), 213–219. https://doi.org/10.1016/j.jcs.2009.11.014
Elansary, H. O., Szopa, A., Kubica, P., Ekiert, H., Al-Mana, F. A., & Al-Yafrsi, M. A. (2020). Antioxidant and Biological Activities of Acacia saligna and Lawsonia inermis Natural Populations. Plants, 9, 908. https://doi.org/10.3390/plants9070908
Fahim, I., Mohsen, O., & Elkayaly, D. (2021). Production of fuel from plastic waste: A feasible business. Polymers, 13(6), 1–9. https://doi.org/10.3390/polym13060915
Fahrullah, F., & Ervandi, M. (2022). Karakterisasi mikrostruktur film whey dengan penambahan konjac glucomannan. Agrointek : Jurnal Teknologi Industri Pertanian, 16(3), 403–411. https://doi.org/10.21107/agrointek.v16i3.12303
Fahrullah, F., Radiati, L. E., Purwadi, & Rosyidi, D. (2020). The physical characteristics of whey based edible film added with konjac. Current Research in Nutrition and Food Science, 8(1), 333–339. https://doi.org/10.12944/CRNFSJ.8.1.31
Gu, X., Zhou, Y., Wu, X., Wang, F., Zhang, C. Y., Du, C., Shen, L., Chen, X., Shi, J., Liu, C., & Ke, K. (2014). Antidepressant-like effects of auraptenol in mice. Scientific Reports, 4, 4433. https://doi.org/10.1038/srep04433
Ha, A. T., Rahmawati, L., You, L., Hossain, M. A., Kim, J. H., & Cho, J. Y. (2022). Anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis effects of quercetin 3-o-β-d-glucuronide in human keratinocytes and melanoma cells via activation of nf-κb and ap-1 pathways. International Journal of Molecular Sciences, 23, 433. https://doi.org/10.3390/ijms23010433
Jaisinghani, R. N. (2017). Antibacterial properties of quercetin. Microbiology Research, 8(1). https://doi.org/10.4081/mr.2017.6877
Jena, S., Ray, A., Sahoo, A., Das, P. K., Dash, K. T., Kar, S. K., Nayak, S., & Panda, P. C. (2021). Chemical Composition and Biological Activities of Leaf Essential Oil of Syzygium myrtifolium from Eastern India. Journal of Essential Oil Bearing Plants, 24(3), 582–595. https://doi.org/10.1080/0972060X.2021.1947897
Kurt, A. (2019). Development of a water-resistant salep glucomannan film via chemical modification. Carbohydrate Polymers, 213, 286–295. https://doi.org/10.1016/j.carbpol.2019.03.013
Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50–58. https://doi.org/10.1016/j.carbpol.2014.01.003
Kurt, A., & Kahyaoglu, T. (2017). Gelation and structural characteristics of deacetylated salep glucomannan. Food Hydrocolloids, 69, 255–263. https://doi.org/10.1016/j.foodhyd.2017.02.012
Liu, Y., Li, X., Chen, Z., & Chan, Y. (2020). Antiproliferative activities of auraptenol against drug-resistant human prostate carcinoma cells are mediated via programmed cell death, endogenous ROS production, and targeting the JNK/p38 MAPK signal pathways. Journal of B.U.ON., 25(1), 454–459.
Mehrbod, P., Hudy, D., Shyntum, D., Markowski, J., Łos, M. J., & Ghavami, S. (2021). Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules, 11, 10. https://doi.org/10.3390/biom11010010
Mezoughi, A. B., Costanzo, C. M., Parker, G. M., Behiry, E. M., Scott, A., Wood, A. C., Adams, S. E., Sessions, R. B., & Loveridge, E. J. (2021). The lysozyme inhibitor thionine acetate is also an inhibitor of the soluble lytic transglycosylase slt35 from Escherichia coli. Molecules, 26(14). https://doi.org/10.3390/molecules26144189
Murugan, G., Benjakul, S., Prodpran, T., Robinson, J. S., Karunanithi, M., Prakasam, V. P. A., & Nagarajan, M. (2024). Properties and Characteristics of Fish Skin Gelatin-Based Three-Layer Film Developed with Bioplastics and Physalis Leaf Extract. Waste and Biomass Valorization, 15, 5931–5946. https://doi.org/10.1007/s12649-024-02554-9
Nguyen, T. L. A., & Bhattacharya, D. (2022). Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules, 27, 2494. https://doi.org/10.3390/molecules27082494
Nursyafni, N., Rahmawati, A., Indriani, L., & Ashari, D. H. (2023). Anti-inflammatory activity of An Ethanol Extract of Pucuk Merah (Syzigium myrtifolium Walp.) in vivo. Jurnal Sains Farmasi & Klinis, 10(3), 286. https://doi.org/10.25077/jsfk.10.3.286-292.2023
Patel, D. K. (2024). Medicinal Importance and Therapeutic Potential of Auraptenol in Medicine: An Important Class of Coumarin from Essential Oils. Letters in Functional Foods, 1, e181223224630. https://doi.org/10.2174/0126669390271266231129104535
Permatasari, N. D., Witoyo, J. E., Masruri, M., Yuwono, S. S., & Widjanarko, S. B. (2022a). Application of a Two-Level Full Factorial Design for the Synthesis of Composite Bioplastics from Durian Seed Flour and Yellow Konjac Flour Incorporating Ethanolic Extract of Syzygium myrtifolium Leaves and its Characterization. Nature Environment and Pollution Technology, 21(4), 1893–1901. https://doi.org/10.46488/NEPT.2022.v21i04.044
Permatasari, N. D., Witoyo, J. E., Masruri, M., Yuwono, S. S., & Widjanarko, S. B. (2022b). Nutritional and Structural Properties of Durian Seed (Durio zibenthinus Murr.) Flour Originated from West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 1012, 012038. https://doi.org/10.1088/1755-1315/1012/1/012038
Permatasari, N. D., Witoyo, J. E., Masruri, Yuwono, S. S., & Widjanarko, S. B. (2022c). In Silico Screening of Syzygium myrtifolium Flavonoid Compounds as AntiBacterial Activity. Journal of Tropical Life Science, 12(3), 299–306. https://doi.org/10.11594/jtls.12.03.02
Permatasari, N. D., Witoyo, J. E., Ni’maturohmah, E., Masruri, M., Yuwono, S. S., & Widjanarko, S. B. (2021). Potential of durian seed (Durio zibenthinus Murr .) flour as the source of eco-friendly plastics materials : a mini-review. International Conference on Agriculture and Applied Sciences (ICoAAS) 2021, 55–62. https://doi.org/10.25181/icoaas.v2i2.2483
Retnowati, D. S., Ratnawati, R., & Purbasari, A. (2015). A biodegradable film from jackfruit (Artocarpus heterophyllus) and durian (Durio zibethinus) seed flours. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 16(4), 395–404.
Strnad, S., Oberhollenzer, Z., Sauperl, O., Kreze, T., & Zemljic, L. F. (2019). Modifying properties of feather keratin bioplastic films using konjac glucomannan. Cellulose Chemistry and Technology, 53(9), 1017–1027. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.100
Sudradjat, S. E., & Rahayu, I. (2022). Evaluasi Antioksidan dan Antidiabetik Infusa Daun Karamunting (Rhodomyrtus tomentosa) pada Ikan Zebra (Danio rerio). Herb-Medicine Journal, 5(2), 1–9. https://doi.org/10.30595/hmj.v5i2.12317
Sun, Q., Wang, N., Xu, W., & Zhou, H. (2021). Ribes himalense as potential source of natural bioactive compounds: Nutritional, phytochemical, and antioxidant properties. Food Science and Nutrition, 9, 2968–2984. https://doi.org/10.1002/fsn3.2256
Tan, N., Yazıcı-Tütüniş, S., Bilgin, M., Tan, E., & Miski, M. (2017). Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules, 22(7), 1–8. https://doi.org/10.3390/molecules22071098
Wahyu, H. S., Madyaningrana, K., & Prakasita, V. C. (2021). Effects of Pucuk Merah (Syzygium myrtifolium (Roxb.) Walp.) Leaves Extract on Lymphocytes Count and Spleen Index of Male Balb/C Strain Mice (Mus musculus L.). Scholars Academic Journal of Biosciences, 9(9), 248–255. https://doi.org/10.36347/sajb.2021.v09i09.004
Wang, L., Auty, M. A. E., & Kerry, J. P. (2010). Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate. Journal of Food Engineering, 96(2), 199–207. https://doi.org/10.1016/j.jfoodeng.2009.07.025
Wang, L., Mu, R., Li, Y., Lin, L., Lin, Z., & Pang, J. (2019). Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nano fibril films. LWT - Food Science and Technology, 113, 108293. https://doi.org/10.1016/j.lwt.2019.108293
Wang, S., Yao, J., Zhou, B., Yang, J., Chaudry, M. T., Wang, M., Xiao, F., Li, Y., & Yin, W. (2018). Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection, 81(1), 68–78. https://doi.org/10.4315/0362-028X.JFP-17-214
Witoyo, J. E., Argo, B. D., Yuwono, S. S., & Widjanarko, S. B. (2022). Optimization of fast maceration extraction of polished yellow konjac (Amorphophallus muelleri Blume) flour by Box-Behnken response surface methodology. Food Research, 6(5), 144–153. https://doi.org/10.26656/fr.2017.6(5).455
Witoyo, J. E., Argo, B. D., Yuwono, S. S., & Widjanarko, S. B. (2023). The response surface methodology approach successfully optimizes a dry milling process of porang (Amorphophallus muelleri Blume) flour production that uses micro mill-assisted by cyclone separator. Agricultural Engineering International: CIGR Journal, 25(1), 176–190.
Yanuriati, A., Marseno, D. W., Rochmadi, & Harmayani, E. (2017). Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydrate Polymers, 156, 56–63. https://doi.org/10.1016/j.carbpol.2016.08.080
Yin, H., Ma, J., Han, J., Li, M., & Shang, J. (2019). Pharmacokinetic comparison of quercetin, isoquercitrin, and quercetin-3-O-β-Dglucuronide in rats by HPLC-MS. PeerJ, 2019, e6665. https://doi.org/10.7717/peerj.6665
Yu, P., Hsu, J., Tseng, C., Chen, J., & Lin, H. (2023). The inhibitory effect of quercetin-3-glucuronide on pulmonary injury in vitro and in vivo. Journal of Food and Drug Analysis, 31, 254–277. https://doi.org/10.38212/2224-6614.3453
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nelsy Dian Permatasari, Jatmiko Eko Witoyo, Donor Utomo M. Susilo, Ayu Rahayu Saraswati, Masruri, Sudarminto Setyo Yuwono, Simon Bambang Widjanarko

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.