EXTRACTION OPTIMIZATION PROPOLIS IN THE FUNCTIONAL DRINK OF KEPROK BATU 55 ORANGE ( Citrus reticulate Blanco)

Authors

  • Rizka Ayu Rifdah Ifrada Universitas Brawijaya
  • Erryana Martati Universitas Brawijaya
  • Teti Estiasih Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jpa.2022.010.04.5

Keywords:

Water, Maceration, Extraction method, Total phenol, Total flavonoids

Abstract

Propolis has been used in various traditional medicines throughout the world and has been shown to have anti-inflammatory activity due to its flavonoid and CAPE content. Naringenin on Tangerines Stone 55 ( Citrus reticulata Blanco ) is a flavonoid glycoside that has the potential as an anti-inflammatory and immunomodulator . Functional drinks from these 2 ingredients can be an anti-inflammatory treatment. By using Maceration Extraction, extraction was carried out with variations in the ratio of water and propolis of 1:5, 1:10 and 1:15 within 15 minutes, 30 minutes and 45 minutes at 50 o C, 60 o C and 70 o C. Conditions optimum extraction with the highest phenolic content ( 4.88 mg GAE/g ) at 30 °C, for 45.00 minutes, and the water:propolis ratio was 1:5. While the total flavonoids were highest at the water:propolis ratio 1:5 for 30 minutes at 50°C (0 . 46 mg QE/g).

References

Ahn, M. R., Kumazawa, S., Usui, Y., Nakamura, J., Matsuka, M., Zhu, F., & Nakayama, T. (2007). Antioxidant activity and constituents of propolis collected in various areas of China. Food Chemistry, 101(4), 1383–1392. https://doi.org/10.1016/j.foodchem.2006.03.045

Andres, A. I., Petron, M. J., Lopez, A. M., & Timon, M. L. (2020). Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using response surface methodology (rsm). Foods, 9(10), 1–15. https://doi.org/10.3390/foods9101398

Araújo, M. J. A. M., Dutra, R. P., Costa, G. C., Reis, A. S., Assunção, A. K. M., Libério, S. A., Maciel, M. C. G., Silva, L. A., Guerra, R. N. M., Ribeiro, M. N. S., & Nascimento, F. R. F. (2010). Efeito do tratamento com própolis de Scaptotrigona aff. postica sobre o desenvolvimento do tumor de Ehrlich em camundongos. Revista Brasileira de Farmacognosia, 20(4), 580–587. https://doi.org/10.1590/s0102-695x2010000400018

Azahar, N. F., Gani, S. S. A., & Mohd Mokhtar, N. F. (2017). Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chemistry Central Journal, 11(1), 1–10. https://doi.org/10.1186/s13065-017-0324-y

Bachir Bey, M., Meziant, L., Benchikh, Y., & Louaileche, H. (2014). Deployment of response surface methodology to optimize recovery of dark fresh fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Food Chemistry, 162, 277–282. https://doi.org/10.1016/j.foodchem.2014.04.054

Bueno-Silva, B., Marsola, A., Ikegaki, M., Alencar, S. M., & Rosalen, P. L. (2017). The effect of seasons on Brazilian red propolis and its botanical source: chemical composition and antibacterial activity. Natural Product Research, 31(11), 1318–1324. https://doi.org/10.1080/14786419.2016.1239088

Chao, C. L., Weng, C. S., Chang, N. C., Lin, J. S., Kao, S. Te, & Ho, F. M. (2010). Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutrition Research, 30(12), 858–864. https://doi.org/10.1016/j.nutres.2010.10.011

Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8(September). https://doi.org/10.3389/fchem.2020.507887

da Silva Cunha, I. B., Rodrigues, M. L. T., Meurer, E. C., Bankova, V. S., Marcucci, M. C., Eberlin, M. N., & Frankland

Sawaya, A. C. H. (2006). Effect of the maceration time on chemical composition of extracts of Brazilian propolis. Journal of Apicultural Research, 45(3), 137–144. https://doi.org/10.1080/00218839.2006.11101332

da Silva Frozza, C. O., Garcia, C. S. C., Gambato, G., de Souza, M. D. O., Salvador, M., Moura, S., Padilha, F. F., Seixas, F. K., Collares, T., Borsuk, S., Dellagostin, O. A., Henriques, J. A. P., & Roesch-Ely, M. (2013). Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and Chemical Toxicology, 52, 137–142. https://doi.org/10.1016/j.fct.2012.11.013

da Silveira, T. F. F., Meinhart, A. D., Ballus, C. A., & Godoy, H. T. (2014). The effect of the duration of infusion, temperature, and water volume on the rutin content in the preparation of mate tea beverages: An optimization study. Food Research International, 60, 241–245. https://doi.org/10.1016/j.foodres.2013.09.024

Daugsch, A., Moraes, C. S., Fort, P., & Park, Y. K. (2008). Brazilian red propolis - Chemical composition and botanical origin. Evidence-Based Complementary and Alternative Medicine, 5(4), 435–441. https://doi.org/10.1093/ecam/nem057

Duran, N., Koc, A., Oksuz, H., Tamer, C., Akaydin, Y., Kozlu, T., & Çelik, M. (2006). The protective role of topical propolis on experimental keratitis via nitric oxide levels in rabbits. Molecular and Cellular Biochemistry, 281(1–2), 153–161. https://doi.org/10.1007/s11010-006-0720-4

Gomes, T., Delgado, T., Ferreira, A., Pereira, J. A., Baptista, P., Casal, S., & Ramalhosa, E. (2013). Application of response surface methodology for obtaining lettuce (Lactuca sativa L.) by-products extracts with high antioxidative properties. Industrial Crops and Products, 44, 622–629. https://doi.org/10.1016/j.indcrop.2012.09.011

Halim, E., Hardinsyah, H., Sutandyo, N., Sulaeman, A., Artika, M., & Harahap, Y. (2013). Kajian Bioaktif Dan Zat Gizi Propolis Indonesia Dan Brasil. Jurnal Gizi Dan Pangan, 7(1), 1. https://doi.org/10.25182/jgp.2012.7.1.1-7

Hernández Zarate, M. S., Abraham Juárez, M. del R., Cerón García, A., Ozuna López, C., Gutiérrez Chávez, A. J., Segoviano Garfias, J. de J. N., & Avila Ramos, F. (2018). Flavonoids, phenolic content, and antioxidant activity of propolis from various areas of Guanajuato, Mexico. Food Science and Technology, 38(2), 210–215. https://doi.org/10.1590/fst.29916

Huang, S., Zhang, C. P., Wang, K., Li, G. Q., & Hu, F. L. (2014). Recent advances in the chemical composition of propolis. Molecules, 19(12), 19610–19632. https://doi.org/10.3390/molecules191219610

Jang, M., Sheu, S., Wang, C., Yeh, Y., & Sung, K. (2009). Optimization Analysis of the Experimental Parameters on the Extraction Process of Propolis. Lecture Notes in Engineering and Computer Science, 2175(1), 1295–1299.

Kubiliene, L., Laugaliene, V., Pavilonis, A., Maruska, A., Majiene, D., Barcauskaite, K., Kubilius, R., Kasparaviciene, G., & Savickas, A. (2015). Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complementary and Alternative Medicine, 15(1), 1–7. https://doi.org/10.1186/s12906-015-0677-5

Lagouri, V., Prasianaki, D., & Krysta, F. (2014). Antioxidant properties and phenolic composition of greek propolis extracts. International Journal of Food Properties, 17(3), 511–522. https://doi.org/10.1080/10942912.2012.654561

Li, Y. R., Chen, D. Y., Chu, C. L., Li, S., Chen, Y. K., Wu, C. L., & Lin, C. C. (2015). Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. Journal of Nutritional Biochemistry, 26(12), 1467–1478. https://doi.org/10.1016/j.jnutbio.2015.07.016

Libério, S. A., Pereira, A. L. A., Araújo, M. J. A. M., Dutra, R. P., Nascimento, F. R. F., Monteiro-Neto, V., Ribeiro, M. N. S., Gonçalves, A. G., & Guerra, R. N. M. (2009). The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci. Journal of Ethnopharmacology, 125(1), 1–9. https://doi.org/10.1016/j.jep.2009.04.047

Lotfy, M. (2006). Biological activity of bee propolis in health and disease. Asian Pacific Journal of Cancer Prevention, 7(1), 22–31.

Lustosa, S. R., Galindo, A. B., Nunes, L. C. C., Randau, K. P., & Rolim Neto, P. J. (2008). Própolis: atualizações sobre a química e a farmacologia. Revista Brasileira de Farmacognosia, 18(3), 447–454. https://doi.org/10.1590/s0102-695x2008000300020

Maffia, P., Ianaro, A., Pisano, B., Borrelli, F., Capasso, F., Pinto, A., & Ialenti, A. (2002). Beneficial effects of caffeic acid phenethyl ester in a rat model of vascular injury. British Journal of Pharmacology, 136(3), 353–360. https://doi.org/10.1038/sj.bjp.0704720

McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73–84. https://doi.org/10.1016/S0308-8146(00)00288-0

Mokhtar, S. U. (2019). Comparison of total phenolic and flavonoids contents in Malaysian propolis extract with two different extraction solvents. International Journal of Engineering Technology and Sciences, 6(2), 1–11. https://doi.org/10.15282/ijets.v6i2.2577

Moon, P. D., Choi, I. H., & Kim, H. M. (2011). Naringenin suppresses the production of thymic stromal lymphopoietin through the blockade of RIP2 and caspase-1 signal cascade in mast cells. European Journal of Pharmacology, 671(1–3), 128–132. https://doi.org/10.1016/j.ejphar.2011.09.163

Moreira, L., Dias, L. G., Pereira, J. A., & Estevinho, L. (2008). Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food and Chemical Toxicology, 46(11), 3482–3485. https://doi.org/10.1016/j.fct.2008.08.025

Nagai, T., Inoue, R., Inoue, H., & Suzuki, N. (2003). Preparation and antioxidant properties of water extract of propolis. Food Chemistry, 80(1), 29–33. https://doi.org/10.1016/S0308-8146(02)00231-5

Nagaoka, T., Banskota, A. H., Tezuka, Y., Midorikawa, K., Matsushige, K., & Kadota, S. (2003). Caffeic acid phenethyl ester (CAPE) analogues: Potent nitric oxide inhibitors from the Netherlands propolis. Biological and Pharmaceutical

Bulletin, 26(4), 487–491. https://doi.org/10.1248/bpb.26.487

Oldoni, T. L. C., Oliveira, S. C., Andolfatto, S., Karling, M., Calegari, M. A., Sado, R. Y., Maia, F. M. C., Alencar, S. M., & Lima, V. A. (2015). Chemical characterization and optimization of the extraction process of bioactive compounds from propolis produced by selected bees Apis mellifera. Journal of the Brazilian Chemical Society, 26(10), 2054–2062. https://doi.org/10.5935/0103-5053.20150186

Pagliarone, A. C., Missima, F., Orsatti, C. L., Bachiega, T. F., & Sforcin, J. M. (2009). Propolis effect on Th1/Th2 cytokines production by acutely stressed mice. Journal of Ethnopharmacology, 125(2), 230–233. https://doi.org/10.1016/j.jep.2009.07.005

Pujirahayu, N., Ritonga, H., & Uslinawaty, Z. (2014). Properties and flavonoids content in propolis of some extraction method of raw propolis. International Journal of Pharmacy and Pharmaceutical Sciences, 6(6), 338–340.

Rebiai, A., Lanez, T., & Belfar, M. L. (2014). Total polyphenol contents, radical scavenging and cyclic voltammetry of algerian propolis. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 395–400.

Serkedjieva, J., Manolova, N., & Bankova, V. (1992). Anti-influenza virus effect of some propolis constituents and their analogues (esters of substituted cinnamic acids). Journal of Natural Products, 55(3), 294–297. https://doi.org/10.1021/np50081a003

Sforcin, J. M. (2007). Propolis and the immune system: a review. Journal of Ethnopharmacology, 113(1), 1–14. https://doi.org/10.1016/j.jep.2007.05.012

Shi, Y., Dai, J., Liu, H., Li, R. R., Sun, P. L., Du, Q., Pang, L. L., Chen, Z., & Yin, K. S. (2009). Naringenin inhibits allergen-induced airway inflammation and airway responsiveness and inhibits NF-κB activity in a murine model of asthma. Canadian Journal of Physiology and Pharmacology, 87(9), 729–735. https://doi.org/10.1139/Y09-065

Shvarzbeyn, J., & Huleihel, M. (2011). Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFκB activation by HTLV-1 Tax. Antiviral Research, 90(3), 108–115. https://doi.org/10.1016/j.antiviral.2011.03.177

Wagh, V. D. (2013). Propolis: A wonder bees product and its pharmacological potentials. Advances in Pharmacological Sciences, 2013. https://doi.org/10.1155/2013/308249

Wang, L. C., Lin, Y. L., Liang, Y. C., Yang, Y. H., Lee, J. H., Yu, H. H., Wu, W. M., & Chiang, B. L. (2009). The effect of caffeic acid phenethyl ester on the functions of human monocyte-derived dendritic cells. BMC Immunology, 10, 1–13. https://doi.org/10.1186/1471-2172-10-39

Wang, Y., Qian, J., Cao, J., Wang, D., Liu, C., Yang, R., Li, X., & Sun, C. (2017). Antioxidant capacity, anticancer ability and flavonoids composition of 35 citrus (Citrus reticulata Blanco) varieties. Molecules, 22(7), 1–20. https://doi.org/10.3390/molecules22071114

Yilmaz, Y., & Toledo, R. T. (2006). Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. Journal of Food Composition and Analysis, 19(1), 41–48. https://doi.org/10.1016/j.jfca.2004.10.009

ZHANG, H., YANG, Y. fei, & ZHOU, Z. qin. (2018). Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 17(1), 256–263. https://doi.org/10.1016/S2095-3119(17)61664-2

zhu, L., Wang, J., Wei, T., Gao, J., He, H., Chang, X., & Yan, T. (2015). Effects of Naringenin on Inflammation in Complete Freund’s Adjuvant-Induced Arthritis by Regulating Bax/Bcl-2 Balance. Inflammation, 38(1), 245–251. https://doi.org/10.1007/s10753-014-0027-7

Zou, Z., Xi, W., Hu, Y., Nie, C., & Zhou, Z. (2016). Antioxidant activity of Citrus fruits. Food Chemistry, 196, 885–896. https://doi.org/10.1016/j.foodchem.2015.09.072

Downloads

Published

2023-01-10

Issue

Section

Articles