Effect of Fermentation Time on Nutritional, Microbiological, and Sensorial Properties of Roselle Kefir Popsicle
DOI:
https://doi.org/10.21776/ub.jpa.2025.013.01.1Keywords:
Fermented Kefir Roselle, Fermentation time, Nutritional properties, Microbiological analysis, Sensory evaluation, Antioxidant activityAbstract
The fermentation time plays a crucial role in the development of functional properties in fermented products, including kefir. This study investigates the effect of fermentation time on the nutritional, microbiological, and sensory properties of Roselle-based kefir popsicles. Fermentation times of 0, 18, 24, and 30 hours were analyzed for changes in acidity, viscosity, turbidity, fat content, ash content, Total Phenolic Content (TPC), Total Flavonoid Content (TFC), anthocyanins, antioxidant activity, calcium concentration, and Lactobacillus spp. population. Sensory evaluation assesses consumer preferences based on appearance, mouthfeel, flavor, aroma, color, and overall acceptance. The results showed that longer fermentation times, especially 30 hours, increased acidity, viscosity, and other nutritional parameters. However, popsicles fermented for 18 hours were most preferred by consumers due to their balanced sensory attributes. This study highlights the role of fermentation time in enhancing both the nutritional value and sensory appeal of Kefir Roselle-based popsicles, suggesting their potential as functional foods.
References
Ahmed, M., Khan, K. R., Ahmad, S., Aati, H.Y., Ovatlarnporn, C., Rehman, M.S., Javed, T., Khursheed, A., Ghalloo,B. A., Dilshad, R. & Anwar, M. (2022). Comprehensive Phytochemical Profiling, Biological activities, and MolecularDocking Studies of Pleurospermumcandollei: An Insight into Potentialfor Natural Products Development. Molecules, 27, 4113.https://doi.org/10.3390/molecules27134113
Akan, E. (2022). The effect of fermentation time and yogurt bacteria on the physicochemical, microbiological, and antioxidant properties of probiotic goat yogurts. Anais da Academia Brasileira de Ciências, 94, e20210875.
AOAC. (2000). Official methods of analysis (17th ed.). Association of Official Analytical Chemists.
https://doi.org/10.1590/0001-3765202220210875
Apalowo, O. E., Adegoye, G. A., Mbogori, T., Kandiah, J., & Obuotor, T. M. (2023). Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods, 13(7), 1026. https://doi.org/10.3390/foods13071026
Brown, H. R., & Green, P. L. (2021). Lipid metabolism in fermented foods: Mechanisms and implications. Journal of Dairy Science and Technology, 56(3), 112-124. https://doi.org/10.1016/j.jdsci.2021.04.007
Cadwallader, K., & Singh, T. (2009). Flavours and off-flavours in milk and dairy products. In Springer eBooks (pp. 631–690). https://doi.org/10.1007/978-0-387-84865-5_14
Chen, X., & Wang, J. (2020). Impact of pH on flavonoid stability and content during fermentation. Food Chemistry, 310, 125977. https://doi.org/10.1016/j.foodchem.2019.125977
Costa, K. K. F. D., Júnior, M. S. S., Rosa, S. I. R., Caliari, M., & Pimentel, T. C. (2017). Changes of probiotic fermented drink obtained from soy and rice byproducts during cold storage. Lebensmittel-Wissenschaft + Technologie/Food Science & Technology, 78, 23–30. https://doi.org/10.1016/j.lwt.2016.12.017
Da-Costa-Rocha, I.,Bonnlaender, B., Sievers, H., Pischel, I.,&Heinrich, M. (2014). Hibiscus sabdariffa L.—A phytochemicaland pharmacological review. Food Chemistry, 165, 424–443.https://doi.org/10.1016/j.foodchem.2014.05.002
Dongmo, S. N., Procopio, S., Sacher, B., & Becker, T. (2016). Flavor of lactic acid fermented malt-based beverages: Current status and perspectives. Trends in Food Science & Technology, 54, 37–51. https://doi.org/10.1016/j.tifs.2016.05.017
Farag, M. A., Jomaa, S. A., El-Wahed, A. A., & El-Seedi, H. R. (2020). The many faces of kefir fermented dairy products: Quality characteristics, flavor chemistry, nutritional value, health benefits, and safety. Nutrients, 12(2), 346. https://doi.org/10.3390/nu12020346
Fernandes, T. (2018). Fermented products in nutrition. Advances in Plants and Agriculture Research, 8(2). https://doi.org/10.15406/apar.2018.08.00303
Gao, X., & Li, B. (2016). Chemical and microbiological characteristics of kefir grains and their fermented dairy products: A review. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1272152
Garrote G. L., Abraham A. G., De Antoni G. L. (2010). “Microbial Interactions in Kefir: a Natural Probiotic Drink,” in Biotechnology of Lactic Acid Bacteria, eds Mozzi F., Raya R. R., Vignolo G. M. (Ames, IO: Wiley-Blackwell; ), 327–340.
Garrote, G. L., Abraham, A. G., & De Antoni, G. L. (2001). Chemical and microbiological characterization of kefir grains. Journal of Dairy Research, 68(4), 639–652. https://doi.org/10.1017/s0022029901005210
Gómez, M., & Martínez, J. (2020). Stability of anthocyanins and cell wall degradation in roselle during lactic acid fermentation. Food Chemistry, 309, 125705. https://doi.org/10.1016/j.foodchem.2019.125705
Granato, D., Santos, J. S., Salem, R. D., Mortazavian, A. M., Rocha, R. S., & Cruz, A. G. (2018). Effects of herbal extracts on quality traits of yogurts, cheeses, fermented milks, and ice creams: A technological perspective. Current Opinion in Food Science, 19, 1–7. https://doi.org/10.1016/j.cofs.2017.11.013
Gänzle, M. G. (2015). Lactic acid bacteria and the production of lactic acid and other metabolic byproducts during fermentation. Current Opinion in Food Science, 2, 34-39. https://doi.org/10.1016/j.cofs.2015.02.003
Jawad, Y. (2023, December 11). How to make popsicles. FeelGoodFoodie. https://feelgoodfoodie.net/recipe/how-to-make-popsicles/
Johnson, M. E., & Lee, W. (2020). Mineral composition of dairy products: Influence on ash content and nutritional value. Journal of Dairy Science, 103(5), 3752-3764. https://doi.org/10.3168/jds.2019-17821
Jones, M. L., & Taylor, R. A. (2022). Impact of fermentation on color and sensory attributes in kefir-based products. Food Biochemistry and Sensory Science, 47(2), 567-580. https://doi.org/10.1080/10408398.2022.1234567
Kok, C. R., &Hutkins, R. W. (2018). Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 76(Supplement_1), 4–15. https://doi.org/10.1093/nutrit/nuy056
Lee, J., & Lee, S. H. (2022). Effects of extended fermentation on antioxidant activity and health benefits of fermented dairy products. Food Science & Nutrition, 10(7), 2765-2774. https://doi.org/10.1002/fsn3.2834
Martinez, J. C., & Rivera, L. M. (2021). Role of lactic acid bacteria in calcium solubility and bioavailability during dairy fermentation. International Journal of Dairy Science, 66(4), 312-320. https://doi.org/10.1111/ijds.2021.324
Mazza, G., & Miniati, E. (2021). Anthocyanins in roselle: Chemical properties and applications. Journal of Agricultural and Food Chemistry, 69(10), 3180-3188. https://doi.org/10.1021/acs.jafc.1c00176
Nielsen, B., Gürakan, G. C., & Ünlü, G. (2014). Kefir: A multifaceted fermented dairy product. Probiotics and Antimicrobial Proteins, 6(3–4), 123–135. https://doi.org/10.1007/s12602-014-9168-0
Perez, E. S., & Kim, H. Y. (2018). Enzymatic release and transformation of phenolic compounds by lactic acid bacteria during fermentation. Journal of Agricultural and Food Chemistry, 66(15), 3947-3953. https://doi.org/10.1021/acs.jafc.8b01234
Roberts, C., & Johnson, A. (2021). Exponential growth of lactic acid bacteria in fermentation: The role of nutrients and environmental conditions. Journal of Applied Microbiology, 131(6), 2318-2330. https://doi.org/10.1111/jam.15128
Simova, E. D., Beshkova, D., Angelov, A., Hristozova, T., Frengova, G. I., & Spasov, Z. (2002). Lactic acid bacteria and yeasts in kefir grain and kefir made from them. Journal of Industrial Microbiology & Biotechnology, 28(1), 1–6. https://doi.org/10.1038/sj/jim/7000186
Smith, J., & Doe, A. (2023). Fermentation and its effects on food coloration. Journal of Food Science and Technology, 58(4), 1234-1245. https://doi.org/10.1016/j.foodsci.2023.03.015
Smith, R. A., & Gonzalez, H. M. (2019). Impact of lactic acid bacteria on mineral solubility during dairy fermentation. Journal of Food Microbiology, 82(6), 245-253. https://doi.org/10.1016/j.fm.2019.04.012
Taliku, I., Maspeke, P. N., & Une, S. (2021). Pengaruh Lama Pengukusan Terhadap Aktivitas Antioksidan dan Karakteristik Kimia Tape Ubi Jalar (Ipomoea batatasL.). Jambura Journal of Food Technology, 3(2), 84–93.
https://doi.org/10.37905/jjft.v3i2.8219
Vieira, C. P., Rosario, A. I. L. S., Lelis, C. A., Rekowsky, B. S. S., Carvalho, A. P. A., Rosário, D. K. A., Elias, T. A., Costa, M. P., Foguel, D., & Conte-Junior, C. A. (2021). Bioactive compounds from kefir and their potential benefits on health: A systematic review and meta-analysis. Oxidative Medicine and Cellular Longevity, 2021, 9081738. https://doi.org/10.1155/2021/9081738
Zhao, L., & Zhang, H. (2019). Lactobacillus fermentation enhances the bioavailability of antioxidants in plant-based foods. Journal of Functional Foods, 57, 182-190. https://doi.org/10.1016/j.jff.2019.04.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Anisya Faten Mohd Rozali, Neneng Windayani, Wenny Bekti Sunarharum, Siti Rashima Romli, Adi MD Sikin, Wan Saidatul Syida Wan Kamarudin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.