Stress Tolerance and Organic Acid Productivity of Fungal Strains Isolated from Local Agricultural Sources
DOI:
https://doi.org/10.21776/ub.jpa.2025.013.02.1Keywords:
Agricultural sources, Fungi, Organic acid, Stress toleranceAbstract
Fungal diversity enhances industrial bioprocess efficiency and innovation. This study was aimed at isolating stress-tolerant fungal strains from local agricultural sources and evaluating their organic acid productivity. Fungal isolation and identification were performed using culture and molecular techniques. Agricultural sources such as cassava peels, palm wine, lignocellulosic waste, and fruit waste were utilized. Environmental stress tolerance and organic acid productivity were assessed using cultural methods. Aspergillus niger and Trichoderma viride showed highest tolerance to temperature and pH. Candida zeylanoides (2.80), Yarrowia lipolytica (2.94), Rhizopus arrhizus (2.58), and A. niger (3.12) were the most promising organic acid producers. Optimal conditions for organic acid production were found to be: 5-10% inoculum size, 30–35°C, pH 5.5–6.0, 144 hours fermentation time, 0.1–0.2%(w/v) nitrogen concentration. These findings indicate that stress tolerance significantly influences the organic acid productivity of these organisms, reinforcing the potential of these local isolates for sustainable bioprocess development.
References
Abbas, N., Wardah, S., Ali, S., Shahnaz C. and Elahi, S. (2016). Citric acidProduction from Aspergillus niger using Mango (Mangifera indica L.) and Sweet orange (Citrus sinensis) Peels as Substrate. International Journal of Scientific & Engineering Research. 7 (2), 105 -118. https://doi.org/10.14299/ijser.2016.02.001
Arotupin, D. J. (2007). Evaluation of Microorganisms from Cassava Waste Water for Production of Amylase and Cellulase. Research Journal of Microbiology. 2(5) 475-480. https://doi.org/10.17311/jm.2007.475.480
Auta, H. K., Abidoye, T., Tahir, H. D. and Aliyu, A. A. (2014). Research Article Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp. International Scholarly Research Notices. 2014: 762021, 8. https://doi.org/10.1155/2014/762021
Barnett, J.A., Payne, R.W. and Yarrow, D. (2000). Yeast – Characteristic and Identification, 3rd ed. Cambridge University Press, Cambridge.
Dhillon, G. S., Brar, S. K., Verma, M., and Tyagi, R. D. (2011). Enhanced citric acid production from apple pomace using Aspergillus niger NRRL 567 by solid-state fermentation. Journal of Industrial Microbiology & Biotechnology, 38(7), 953–962.
Hatcher, D.W., Symons, S.J. and Manivannan, U. (2004). Developments in the use of image analysis for the assessment of oriental noodle appearance and colour. J. Food Eng. 61: 109-117. https://doi.org/10.1016/S0260-8774(03)00192-4.
Hohmann, S. (2002). Osmotic Stress Signaling and Osmoadaptation in Yeasts. Microbiol Mol Biol Rev. 66(2): 300–372. doi: 10.1128/MMBR.66.2.300-372.2002.
Hohmann, S., Krantz, M., & Nordlander, B. (2012). Yeast osmoregulation. Methods in Enzymology, 428, 29–45. https://doi.org/10.1016/B978-0-12-398328-2.00003-0
Iyanyi, N. G. and Ataga, A. E. (2020). Isolation and Molecular Identification of some Fungi Associated with Jatropha curcas (L.) Nig. J. Biotech. Vol. 37(2): 103-112. https://doi.org/10.4314/njb.v37i2.10
Kawaguchi, H., Hasunuma, T. and Ogino, C. (2016). Bioprocessing of bio based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–9. https://doi.org/10.1016/j.copbio.2016.02.031
Keller, N.P. (2019). Fungal Secondary Metabolism: Regulation, Function and Drug Discovery. Nat. Rev. Microbiol. 17, 167–180. https://doi.org/10.1038/s41579-018-0121-1
Keller, N.P., Turner, G. and Bennett, J.W. (2015). Fungal Secondary Metabolism - from Biochemistry to Genomics. Nat. Rev. Microbiol. 3, 937–947. https://doi.org/10.1038/nrmicro1286
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution. 35(10), 1093. https://doi.org/10.1093/molbev/msy096
Lane, M. M., Burke, N., Karreman, R., Wolfe, K. H., O'Byrne, C. P. and Morrissey, J. P. (2021). Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek. 100, 507–519. https://doi.org/10.1007/s10482-011-9606-x.
Li, S., Chen, X., and Liu, L. (2016). Pyruvate production in Candida glabrata: manipulation and optimization of physiological function. Crit. Rev. Biotechnol. 36, 1–10. https://doi.org/10.3109/07388551.2013.811636
Liu, H., Zhang, S., Zhang, X. and Chen, C. (2015). Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings. Journal of Hazardous Materials, 286, 440-448. https://doi.org/10.1016/j.jhazmat.2015.01.008
Liu, Y., Liao, W., Liu, C. B. and Chen S. L. (2006). Optimization of L-(+)- lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395. Applied Biotechnology. 131: 844-853. https://doi.org/10.1007/978-1-59745-268-7_68
Olowonibi, O.O. (2017). Isolation and Characterization of Palm Wine Strains of Saccharomyces cerevisiae Potentially Useful as Bakery Yeasts. Eur Exp Biol, 7:11. https://doi.org/10.21767/2248-9215.100011
Papanikolaou, S., and Aggelis, G. (2011). Citric acid production by Yarrowia lipolytica: An overview. Biotechnology Advances, 29(3), 316–331.
Park, Y. K., Nicaud, J. M., & Ledesma-Amaro, R. (2018). The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends in Biotechnology, 36(3), 304–317. https://doi.org/10.1016/j.tibtech.2017.10.013
Saito, H. and Posas, F. (2012). Response to hyperosmotic stress. Genetics, 192(2), 289–318. https://doi.org/10.1534/genetics.112.140863
Sato, K., Nagatani, M., Nakamura, K and Sato, S. Growth estimation of Candida lipolytica from oxygen uptake in a solid state culture with forced areation. J Ferment Technol. 1999- 61:623–629.
Show, P. L., Oladele, K. O., Siew, Q. Y., Zakry, F. A. A., Lan, J. C. W., & Ling, T. C. (2015). Overview of citric acid production from Aspergillus niger. Frontiers in Life Science, 8(3), 271–283.
Taleghani, H. G., Najafpour, G. D. and Ghoreyshi, A. A. (2016). A study on the effect of parameters on lactic acid production from whey. Polish journal of chemical Technology, 18 (1), 58-63. https://doi.org/10.1515/pjct-2016-0010
Wei, N., Quarterman, J., Kim, S. R., Cate, J. H. D. and Jin, Y. S. (2013). Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 4, 2580. https://doi.org/10.1038/ncomms3580
Yin, X., Shin, H. D., and Du, G. (2017). Engineering microbial stress tolerance for bio-based production. Biotechnology Advances, 35(6), 707–720.
Zhang, J., Xiao, Q., Guo, T. and Wang, P. (2021). Effect of sodium chloride on the expression of genes involved in the salt tolerance of Bacillus sp. strain “SX4” isolated from salinized greenhouse soil. Open Chemistry 19: 9–22 https://doi.org/10.1515/chem-2020-0181
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Christopher Osazuwa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.