IDENTIFIKASI GLUKOSILTRANSFERASE (gtf) PENYANDI EKSOPOLISAKARIDA PADA STRAIN Weisella confusa PROBIOTIK ASAL AIR SUSU IBU (ASI)

Nosa Septiana Anindita

Abstract


Identifikasi gen gtf dan kemampuan produksi EPS digunakan sebagai parameter dalam seleksi isolat probiotik yang memenuhi syarat Generally Recognized as Safe (GRAS). Penelitian ini bertujuan sebagai salah satu upaya dalam memperoleh isolat lokal kandidat probiotik potensial indigenus asal ASI sebagai penghasil EPS. Metode penelitian ini meliputi identifikasi gen gtf menggunakan primer spesifik (DegFor dan DegRev) dan produksi EPS selama fermentasi. Berdasarkan hasil studi, identifikasi keberadaan gen gtf  pada 4 strain Weisella confusa asal ASI terdeteksi pada 660 bp dan Weisella confusa strain AS3 memiliki kemampuan menghasilkan EPS tertinggi yaitu 1883 ± 56 mg/L. Sehingga, Weisella confusa kandidat probiotik potensial asal ASI memiliki kemampuan produksi EPS berdasarkan identifikasi molekuler dan produksi EPS selama fermentasi.


Keywords


Air susu ibu (ASI); Eksopolisakarida; Glukosiltransferase (gtf); Weisella confusa

Full Text:

PDF

References


Anindita, N.S., Novalina, D dan Sholikhah, A.N. 2018. Isolasi Dan Identifikasi Bakteri Asam Laktat Asal Air Susu Ibu Sebagai Kandidat Probiotik Dalam Pangan Kesehatan. Laporan Penelitian Dosen Pemula (PDP) 2018. Yogyakarta.

Badel, S.T., Bernardi, T and Michaud, P. 2011. New Prespectives for Lactobacilli Exopolysaccharides. Biotecnology Advances, 29: 54-56.

Briczinski, E.P and Roberts, R.F. 2002. Production of an Exopolysaccharide-Containing Whey Protein Concentrate by Fermentation of Whey. Journal Dairy Science, 85: 3189–3197.

Caggianiello, G., Kleerebezem, M and Spano, G. 2016. Exopolysaccharides produced by lactic acid bacteria: From health promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology, 100: 3877–3886.

Carr, F.J., Chill, D and Maida, N. 2010. The lactic acid bacteria: a literature survey. Critical Reviews in Microbiology, 28: 281-370.

Castro-Bravo, N., Wells, J.M., Margolles, A., and Ruas-Madiedo, P. 2018. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Frontiers in Microbiology. 9:1-15.

Fraunhofer, M.E., Geissler, A.J., Jakob, F and Vogel, R.F. 2017. Multiple Genome Sequences of Exopolysaccharide-Producing, BreweryAssociated Lactobacillus brevis Strains. Genome Announcements. American Society For Microbiology, 5:26, 1-2.

Fukao, M., Zendo, T., Inoue, T., Nakayama. J., Suzuki, S., Fukaya, T., Yajima, N and Sonomoto, K. 2019. Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, Lactobacillus brevis KB290. Journal of Bioscience and Bioengineering. 128(4):391-397.

Gayathiri, E., Bharathi, B., Velu, S., Siva, N., Natarajan, S., Prabavathi, S and Selvadhas, S. 2017. Isolation, Identification and Optimization of Exopolysaccharide Producing Lactic Acid Bacteria from Raw Dairy Samples. International Journal of Pharma And Chemical Research, 3:2, 202-211.

Gangoiti, J., Pijning, T and Dijkhuizen, L. 2018. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing ɑ-glucans from starch and sucrose. Biotechnology Advance. 36(1):196–207.

Halim, C.N dan Elok, Z. 2013. Studi Kemampuan Probiotik Isolat Bakteri Asam Laktat Penghasil Eksopolisakarida Tinggi Asal Sawi Asin (Brassica juncea). Jurnal Pangan dan Agroindustri, 1(1): 129-137.

Hidalgo-Cantabrana, C., Lopez, P., Gueimonde, M., De Los Reyes-Gavilan, G., Suarez, A., Margolles, A and Ruas-Madiedo, P. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 4: 227–237.

Khalil, E.S., Manap, M.Y., Mustafa, S., Amid, M., Alhelli, A.M and Aljoubori, A. 2018. Probiotic characteristics of exopolysaccharides producing Lactobacillus isolated from some traditional Malaysian fermented foods. Journal of Food, 16:1, 287-298.

Kralj, S., van Geel-Schutten, G.H., van der Maarel, M.J.E.C and Dijkhuizen, L. 2003. Efficient screening methods for glucosyltransferase genes in Lactobacillus strains. Journal Biocatalysis and Biotransformation. 21:4-5.

Leivers, S., Hidalgo-Cantabrana, C., Robinson, G., Margolles, A., Ruas-Madiedo, P and Laws, A. P. 2011. Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. Lactis IPLA-R1 and sequence analysis of its putative eps cluster. Carbohydrate Research. 346(17):2710–2717.

Li, Y., Li., Guo, S and Zhu, H. 2016. Statistical optimization of cul¬ture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro. EXLI J. 15: 211–220.

Malaka, R dan Effendi, A. 2007. Effec of incubation condition on the growth characteristics and exopolysaccharide production by ropy Lactobacillus delbrueckii subsp. bulgaricus. Buletin Penelitian Seri Hayati,7(2): 105-109.

Malik, A., Ariestanti, D.M., Nurfachtiyani, A dan Yanuar, A. 2008. Skrining Gen Glukosiltransferase (GTF) Dari Bakteri Asam Laktat Penghassil Eksopolisakarida. Makara Sains, 12:1, 1-6.

Malik, A., Radji, M., Kralj, S and Dijkhuizen, L. 2009. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two di¡erent Weissella confusa strains from soya. FEMS Microbiol Lett., 300: 131–138.

Malik, A., Hermawati, A.K., Hestiningtyas, M., Soemiati, A dan Radji, M. 2010. Isolasi dan skrining molekuler bakteri asam laktat pembawa gen glukansukrase dari makanan dan minuman mengandung gula. Makara, Sains. 14(1):63-68.

Meng, X., Gangoiti, J., Bai, Y., Pijning, T., Van Leeuwen, S.S and Dijkhuizen, L. 2016. Structure–function relationships of family GH70 glucansucrase and 4,6-a-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences. 73(14):2681-2706.

Monchois, V., Willemot, R.M and Monsan, P. 2009. Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev., 23:2, 131-151.

Mozzi, F., De Giori, G.S., Oliver, G and de Valdez, G.F. 1996. Exopolysaccahride production by Lactobacillus casei. Influence of salts. Michwissenshaft. 50(4): 186-188.

Nanda, A and Raghavan, C.M. 2014. Production and characterization of exopolysacharides (EPS) from the bacteria isolated from Pharma lab sinks. International Journal Pharmaceutical Technology Research 6:4, 1301–1305.

Nishimura, J. 2014. Exopolysaccharides Produced from Lactobacillus delbrueckii subsp. bulgaricus. Advances in Microbiology, 4: 1017–1023.

Nuraida, L., Winarti, S., Hana dan Prangdimurti, E. 2011. Evaluasi in vitro terhadap kemampuan bakteri asam laktat asal air susu ibu untuk mengasimilasi kolesterol dan mendekonjugasi garam empedu. Jurnal Teknologi dan Industri Pangan, 22:1, 46-52.

Nwodo, U.U., Green, E and Okoh, A.I. 2012. Bacterial exo-polysaccharides: functionality and prospects. International Journal Molecular Science, 13: 14002–14015.

Ozgun, D and Vural, H.C. 2011. Identification of Lactobacillus strains isolated from faecal specimens of babies and human milk colostrum by API 50 CHL system. Journal of Medical Genetics and Genomics, 3:3, 46 – 49.

Peant, B., LaPointe, G., Gilbert, C., Atlan, D., Ward, P and Roy, D. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology. 151(6):1839-1851.

Pham, P.L., Dupont, I., Roy, D., Lapointe, G and Cerning, J. 2000. Production of Exopolysaccharides by Lactobacillus Rhamnosus And Analysis of Its Enzymatic Degradation During Prolonged Fermentation. Applied Environmental Microbiology, 66: 2302–2310.

Polak-Berecka, M., Choma, A., Wasko, A., Gorska, S., Gamian, A and Cybulska, J. 2015. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers, 117: 501–509.

Rawal, P.M., Chauhan, P.B., Prajapati, H and Gahlout, M. 2016.Evalu¬ation of cultivation condition for enhanced production of exopoly¬saccharide by bacterial isolate P 11 under submerged culture condi¬tion. International Journal Advanced Research Biology Science, 3:5, 183–190.

Ruas-Madiedo, P., Moreno, J.A., Salazar, N., Delgado, S., Mayo, B., Margolles, A and de los Reyes-Gavilan, C.G. 2007. Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota. Applied Environmental Microbiology, 73:13, 4385–4388.

Ryan, P.M., Ross, R.P., Fitzgerald, G.F., Caplice, N.M and Stanton, C. 2015. Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food and Function, 6: 679–693.

Sanlibaba, P and Çakmak, G.A. 2016. Exopolysaccharides produc¬tion by lactic acid bacteria. Applied Microbiology 2:2, 1–5.

Serrano-Nino J.C., Solis-Pacheco, J.R., Gutierrez-Padilla, J.A., Cobian-Garcia, A., Cavazos-Garduno, A., Gonzalez-Reynoso, O and Aguilar-Uscanga, B.R. 2016. Isolation and Identification of Lactic Acid Bacteria from Human Milk with Potential Probiotic Role. Journal of Food and Nutrition Research, 4:3, 170-177.

Solieri, L., Bianchi, A., Mottolese, G., Lemmetti, F and Giudici, P. 2014. Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiology, 38: 240–249.

Song, J., Lee, S.C., Kang, J.W., Baek, H.J and Suh, J.W. 2004. Phylogenetic Analysis of Streptomyces spp. Isolated from Potato Scab Lesions in Korea on the Basis of 16S rRNA Gene and 16S–23S rDNA Internally Transcribed Spacer Sequences. International Journal System Evolution Microbiology, 54: 203-209.

Stack, H.M., Kearney, N., Stanton, C., Fitzgerald, G.F and Ross, R.P. 2010. Association of beta-glucan endogenous production with increased stress tolerance of intestinal Lactobacilli. Applied and Environmental Microbiology. 76(2):500-507.

Suryawira, Y. M. 2011. Produksi Eksopolisakaridaoleh Bakteri asam Laktat Pada Medium Sari Kurma dan Sari Murbei. Skripsi. Universitas Brawijaya. Malang.

Tieking, M., Korakli, M., Ehrmann, M.A., Ganzle, M.G and Vogel, R.F. 2010. In situ production of exopolysaccharides during Sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Applied Environmental Microbiology. 69:2, 945-52.

Torino, M.I., Font de Valdez, G and Mozzi, F. 2015. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Frontier in Microbiolology, 6: 1–16.

van Hijum, S.F.A.T., Kralj, S., Ozimek, L.L., Dijkhuizen, L and van Geel-Schutten, G.H. 2009. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev., 70:1, 157-176.

Venkateswarulu, T.C., Chakravarthy, K., Reddy, R., Babu, J and Kodali, V. 2016. Morphological and biochemical characterization of exopolysaccharide producing bacteria Isolated from dairy effluent indira M1. Pharmaceutical Science Research, 8:2, 88–91.

Widodo., Taufiq, T.T., Aryati, E., Kurniawati, A and Asmara, W. 2012. Human origin Lactobacillus casei isolated from Indonesian infants demonstrating potential characteristics as probiotics in vitro. Indonesian Journal Biotechnology 17:1, 79-89.

Yan, S., Zhao, G., Liu, X., Zhao, J., Zhang, H and Chen, W. 2017. Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes. The Royal Society of Chemistry. RSC Adv., 7: 31736–31744.




DOI: http://dx.doi.org/10.21776/ub.jpa.2020.008.02.3

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 nosa septiana anindita

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.